证明多边形内角和的方法

 时间:2024-10-14 12:55:15

1、方法一:如图1所示,取多边形上任意一个顶点,连接除相渭螂鳐认邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,即六边形ABCDEF的内角和等于4个三角形内角和之和:4×180°,从而边剞麽苍足数为6的多边形内角和为(6-2)×180°=4×180°,再列举其它多边形可以归纳总结出n边形内角和为(n-2)×180°.

证明多边形内角和的方法

3、方法三:如图3所示,在多边形的一条边上任意取一点P,连接这点与各顶点的线段,把六边形ABCDEF分成了五个三角形,所以此六边形的内角和等于五个三角形的内角和减去一个平角的度数,即:5×180°-180°=4×180°,归纳之后得到n边形的内角和为(n-2)×180°。

证明多边形内角和的方法
  • 如何画已知点相对于直线的对称点(找对称点)
  • 常见的说明方法有哪些?
  • 怎样利用圆规画三角形
  • 三角形中位线的三种证明方法
  • 平行线怎么画
  • 热门搜索
    携程订机票怎么取票 工资超过3500怎么扣税 洗脸刷怎么用 儿童头晕是怎么回事 愿望近义词 慢慢的近义词是什么 幸运的近义词 正好的近义词 卡卡西怎么死的 胃出血是怎么回事