曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

 时间:2026-02-14 06:13:41

1、联立方程,求交点通式如下:

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

2、通过定积分,求围成面积通式如下:

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

1

曲线y1=-2x^2/3与直线y2=-a-ax围成的面积

  • 曲线y1=-x^2/2与直线y2=-a-ax围成的面积
  • 如何求函数y1=sin3x与y2=sinx/3围成的面积
  • 曲线y1=-5x^2/2与直线y2=ax围成的面积
  • 曲线y1=-5x^2/2与直线y2=ax-1围成的面积
  • 曲线y1=-x^2/2与直线y2=ax围成的面积
  • 热门搜索
    蒜泥龙虾的做法 蘑菇肉片的做法 银耳红枣汤的做法 靖怎么读 大黄鱼的做法 恣怎么读 柴火鸡做法 黄花鱼的家常做法 麻辣龙虾的做法 茴香馅饺子的做法